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A method is advanced for constructing the exact solution of the two-dimensional 

problem of the bending of a semi-infinite beam supported by one of the edges 

of an elastic wedge (0 +I 8 < CL < 2 z, 0 .c P < W) . The method is based on 
reducing the contact problem to the Carleman’s boundary value problem for 
analytic functions and to deriving its exact solution. The basis of the method is 

presented and the characterisitics of the solution obtained are investigated for 
three cases,practically the most interesting: r~. ~- I!:! n (the beam is in contact 

with a quarter plane), x -= 3/,~ n (the bending beam lies on the pit bottom), 
cc = n (the beam is in contact with a half-plane). For all three cases the nature 
of the singularity of the contact stress at the beam end (coinciding with the edge 
of the wedge) is shown. In the first case the stress is finite and in the two others 

is defined asymptotically by 0 (r-’ I! and 0 (?-’ ‘1, 7 + 0 , respectively. This 
investigation is made neglecting the contact shearing stress and for the case of 
a two-dimensional deformation in the wedge and in the beam (cylindrical flex- 
ure of the plate). Transformation to the state of two-dimensional stress is carried 

out by a known substitution of elasticity constants. 

1. Statement of the problem, On the boundary (1 -~ ry, of an elastic wedge 

(0 \<.e \< a < 2Jt, U -< r < 00) a beam of rigidity D is placed and to its end 
a force P and a moment *II are applied. It is assumed that the other edge of the wedge 

is free and the contact shearing stress between the beam and the wedge is equal to zero. 

It is required to find the stress distribution in the wedge and the deflections of the beam. 
Boundary conditions and equilibrium conditions are given by 

\ co (r, u) dr = P, 1; 5,, (r, u) rdr = A/ (1.2) 
0 ,I 

By the methods given in paper [l] we obtain, as result of realization of the first bound- 

fl (P, 0 > = w - P) (6 (PI [ co3 (p --t 1) (3 - cos (p -- 1) 0 1 I- 
sir1 (p + 1) 0 ) - (p” + p) sin (p - 1) 0 

f2 (p, 0) = -13 (p) [(p - 1) sin (p - 1) 0 i- (x - 11) Fin (p -I- 
I) 01 + ($3 -I- 1) cos (JJ - 1) tj -I- (x - 11) cos (p + 1) 0 
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6 (p) = (p + 1) [cm (p - 1) a - cos (p + 1) cd [(p - 1) sin (p - 1) ct - 

(p $ 1) sin (p + 1) CCI-~ 

Here G is the shear modulus, x. _I 3 - 4v, v is the Poisson’s ratio and B (p) is an 

unknown function which has to be determined. 
In selecting the contour of integration for formulas (1,3), it must be taken into account 

that the stress crs to be determined can have not more than the singularity of the inte- 

grand for r --+ 0, and for r -+ cc its decrease must not be slower that r-r. These 
requirements, in the first place, are indispensable for the existence of the integrals (1.2). 

secondly, they follow from the uniqueness theorem [l] for the first basic problem of the 
theory of elasticity for a wedge. Taking into account that Mellin’s inversion formula 

must be valid, we come to the conclusion [2] that the integration contour has to take the 
form L = (C - im. C <- im) and c0 < c < 0. Here co is the real part of the pole 
of the integrand in the formula (1.3) ;this pole determines the behavior of ou when r +-0. 

To find the function B (p) we use the remaining boundary condition taking into ac- 
count the formulas (1.3). As a result, we obtain the relation 

(1.4) 
Uj-iX c+i cu 3 

1 (- h) B, (p) rm~-Jdp -- 1 I1 (p, CL) f;’ (p, a) [I (1~ -k p)-’ B, (p) r-P-l dp 
-_:m r--i@. h’=O 

h =. D (x + 1) (4c)-l, 

Let us assume that the function 61 (p) is such that 0 (z) = B, (c -L i;) satisfies 
all the conditions of Cauchy theorem in the strip 0 .( Im z < :i. This permits the con- 
tour of integration in the left integral to be moved to the left, to three, As a result, we 

have the Carleman’s boundary value problem for the strip 

(D(L)= -K(t)@(t+3i), --.?%J<t< .._ (1.5) 

K it) = ?~f~ (c _t- it, u) f;’ (c + it, u) f1 (k + c + it), c = Rep 

h=O 

Following the results given in [S] we reduce the Carjeman’s problem (1.5) to the follow- 
ing Riemann problem on the semi-axis : 

o+(g) =- Ii (3Inj /2x) W- (Q, E>O (1.6) 

Here w+ (g) and w- (E) are the limit values of the unknown analytic function 

respectively on the upper and lower edge of the cut made along the ray arg 5 = 0. 
The Riemann’s boundary value problem has been widely investigated [4], its exact 

solution is constructed in quadratures and its form depends mainly on the order [index]. 
After finding the order of the problem (1.6) we construct its exact solution. In this way, 
the unknown function B @) will be determined and, consequently, the exact solution 
of the initial problem will be constructed. This solution will be given below and rigor- 
ously substantiated for the most interesting particular values of the angle CZ. It turns out 
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that in each case the order of the problem (1.6) is equal to two. Therefore an exact 

solution of the initial problem contains two arbitrary constants which are determined 

from equilibrium conditions (1.2). According to Mellin’s inversion formula for co (r, 

a), we can express them in the following form : 

B (0) = P/,-l (0. T), B 13) -y fl/f,1 (1. cx) (1.7) 

2. C a80 z = ‘/gr. Instead of (1.4) we have here 

We assume that the function B (p) 1s such that the function (D (2) -= Z?,(c -+ iz\ is 

analytic in the strip 0 < 1ru 3 < 3, finite and continuous in the closed strip (I ,< 

1111 2 .-,’ ::. Besides this it is uniform for 6) < s < 3 

The last condition guarantees : (1) the possibility of using the results of [ 31, 

(2) 0 (2) + 0 as I : 1 --f 03 in the closed strip 0 :_, Im ; 1 3 (see p] ) . As will 

be shown, the function B (p) constructed below actually possesses these properties. 

To transform the relation (2.1) we replace there ,O by c + it. Afterwards, making 

use of the properties of the function iI) (3) discussed above, we move (in applying Cau- 

thy theorem) the contour of integration in the left integral to the left, to three. Conse- 

quently, we have the Carleman’s problem for the strip (1.5). Moreover, the function 

(11 (2) which has to be found is analytic in the strip 1) ,< 1111 : .( 3 and satisfies the 

condition (2.2) ; the coefficient of the problem is given by the following formula : 

K (t) = h fl (Ii !- C f- it) F-l (f) (2.3) 

k-1 

F (t) := [(c + if)’ - l] tq l/,x (c + it) (- (c -\- it)” ctg l/$-C (c + it) 

The corresponding analysis shows that in the case a = ‘/+ we have c,, - -I. The 

coefficient of the problem obtained at -- 1 < c < 0 has no singularities on any finite 

part of the real axis and satisfies the Holder’s condition (K (t) E 11) ; at infinity the 

asymptotics F (t) = f i, K (t) = *At:’ is valid for f + &- cu. In addition, the 

function F (t) at -1 < c < 0 is continuous over c uniformly relative to t and does 

not vanish. 

According to the arguments given in Sect. 1, we transform the Carleman’s problem 

into the Riemann’s problem (1.6). The coefficient of the resulting problem is represen- 

ted by a function which satisfies the Holder’s condition on any closed part of the real 

semi-axis not containing the ends and does not vanish there. In the vicinity of the ends 
E z () . : 00 the coefficient tends to infinity logarithmically. 

Boundary value problems with singularities of tiris kind, were examined in [S] for the 

case when the contour with a given boundary condition is finite. In this case in order to 
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use the results given in [5], it is necessary to generalize these results for a half-infinite 
contour or (what proved to be preferable) to reduce the problem (1.6) by the transform- 
ation 5 = i (1 - IL) (1 -J- ZC)- I into the Riemann’s problem on the upper semi-circle 
(1‘) with the end points I( 1 (beginning) and u - 1 (end). As a result, we obtain 

the following boundary value problem: 

t’),- (Zi) := I\‘, (ff)wl- (21). 11 E I‘ (2.4) 

The most difficult task is to calculate the order of the problem (2.4) which according 
to [5] is determined by the formula 

(2.5) 

Here the functions & (u) appear in the expression for the coefficient of the problem 
(2.4) at the vicinity oithe ends 

K, (I() : c, (10 III:’ (1 - n), Zl - 1 (2.6) 
KI (21) --: G_ (u) In” (1 + u) II - -1 

We note that the form of the canonical solution of the problem (2.4) depends on the 
value x+. Now we shall calculate these values and in the first place we find 
argC,(l) 0 1 and arg c_ (-1) = tit. We shall establish the relation between 

them. For this reason we express the values 8 1 and I3 s in terms of arg K, (.&I). At the 
point II -- i the function li, becomes infinite, therefore the value of arg Kl (1) is 
indeterminate. Instead we take a point ZL t_ r which is sufficiently near to the point 
i( m= I. For this point the equation arg Kt (u) ~- ;rrg G, (u) f 3 i\rg 111 (1 - U) 
is valid. In this equation we take the limit at u -+ 1. We have in [s] that lim arg 111 
(LL,, - U) z n for u--tug then we obtain :irg f~‘, ( 1) -1 [j 1 -7 l&c. In the same 
manner we find that arg K, (-1) un -. 13~1. By definition arg K, (1) -t- ,1 y= 
;trgKr (-i), where d --= ]arg k’, (u)]ix. Consequently, the values fj t and 0 c are 
related by the formula 81 -i h -_ 82. 

Since K (t) ~~~ -j-t” for t -+ - 00, then arg K, (1) -_: 2nn. Selecting the main 
branch as arg h’, (1) we obtain u 1 =- --&I , then e2 == -3n + A. From [4] we 
can find that A -z larg K (t)lI!z -- 3~ - A,, where A, :--- larg F (t)]::. Since 
F (tf ~21 i_i for t+ h 00. then A1 --I. h-n, where /i is an odd integer. Due to pro- 
perties of the function F (i), >jrg F (t) for -1 < c i 0 is a ~ontinuo~ function 

over c uniform with respect to t. Therefore, we can show by an inderect proof that F: 
is the same for all -i < c < (‘. Consequently, if we find Iz for a fixed c, we find 
it for any ----- 1 < c -< 0. Having this in mind, we take c = ---‘/.: in the formula 
(2.3). As a result, we obtain 

I: (t) = U (I) i_ iV {r) 

I: (t) =-: f’/$ -+ 312) ch-‘?tt, V (t) = tr - sh nl) ch-‘Jr: 

If U, V are considered as Cartesian coordinates, then U - U (J’!, 1. = \- (f) repre- 
sent a parameteric equation of a certain curve 9. To construct it, it is necessary to 
take into account that U (--CO) = ci ( +ca) = U, Cr (t) > 0 for any finitevalue 
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of tt while v(-co) == !, f-(-i-m) = -1 ; 17(f) hasitsonlyzerovaluewhen 
t = 0. It is evident from the shape of the curve 52 that i? = -1 and, consequently, 
f!,, = --3t. 

Realizing the formula (2.5) we obtain x, = 0, 3c_ : = 2, and the order of the prob- 
lem x, =: 2. Taking this into account and using the formulas from [5] (after the trans- 

formation from I’ to the reaI axis), we obtain the solution of the Carleman’s problem 

(2.7) 

CD (t) = El (i) esp l’/,lJl Ii (f) -t 1 (01 
@ (t + 3i) =- - R (t) exp [--‘,/z In K (f} f f !iji 

Here A, and A, are arbitrary constants which according to the formulas (1.7) are deter- 
mined by the conditions @ (ic) =-- (2i.)-‘P. (11 [i (c - l)] == (2h)-1ilI. Moreover, 
the function B (p) which has to be determined is related to (1) (2) by 

B (p) = <I (k -+- p)-1 cf, [i (c - pf] csc -+ np (2.8) 
k=l 

Let us examine the properties of the function @ ]i (c - I))] in the plane 11 = G i- 
it. Analyzing the formulas (2.7) we note that for any integer k the function @ [i (c - 

p)i is analytic in each strip c -i 3,$ < o -_I: c - 3 (fi + ‘i), and on each straight 
line RP p = c + 3k it has a discontinuity. We shall find the relation between the 
limiting values of this function on the left (a_ [i (t - p)]) and on the right 

(@* fi (c - P)l) on the straight line Re p = c + 312. Since (I)_ ]i (c - p)] = 
(-l)k@ (t) and a)+ [i (c - p)j = (-i)ii-l @ (t -1 :ji), while Q (t) = -_k’ (t) 
($1 (t + si), then the limiting values on this straight line are related by 

aI_ [i (c - p)j = K Ii (c -t 3k - p)l a+ ii (c - p,>I c&9? 

We shall prove that these Iimiting values are locally continuous, i. e. continuous on 

each finite segment Ic + 3k - iA, c -i_ 3,$ -I- i.11. To do this it is sufficient to 
prove the continuity of the functions (1) (t) and @ (t +- 13:) on the segment [ ---_ t . A]. 
Let us prove, e.g. that (1) (i) is localfy continuous. Since K if> E 1”1 on the segment 

[--A, A j and does not vanish there, then the function In Ii (31n T/&) s 11 on the 

segment [e-A. c”]. Consequently, according to Cauchy integral properties [4], 0) ( c)E 
N on this segment. By passing to C]I (I) = e’+!rbr- (c”3-‘), we obtain that O(t) E If 
on the segment [ --,I, A ] ; the continuity is proved. 

We also note that for the function cl1 [i (c - p)] the following asymptotics is valid: 
-- 

~,I~(c-~)]=I~(l/~pJ:‘c’-‘~‘~-I~l)~ IPI-.“” 

This follows from the results of [5] and from the formulas showing the relation between 

the functions <O~ (u.) and @ [S (c - m)]. 
Taking into account the formula (2.8) and the properties of the function (1) f i {C -- 

P)]* we come to the conclusion that the function B {p) , in fact, contains all the pro- 
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perties assumed before. Therefore all operations performed above are valid and, conse- 
quently, the contact problem under consideration is solved. E. g. the formula for the 

stress at, is expressed by ,Ti~ 

2 t 
“0 = 7 2nc \ f (24 0) 9_ [i (c - p)] r-)9-l dp (-- 1 <C < 0) (2.10) 

c-: Lx 
(p’> - 1) tg ‘hnp [,cos (p - 1) 0 - cos (p i_ 1) O] - 

f (p, e) = - (P” + P) sin (P - 1) 0 + (P’ - P) sin (P -C 1) 0 
(1 + p) (2 + p) (5 + 11) sin l/znp 

Let us investigate the behavior of this stress at the wedge vertex and at infinity. For the 
investigation of co at r -+ 0 we examine the integral 

& s f (PI 0) CD Ii (c - p)] r-P-1 dp (2.11) 

taken for the rectangle with vertices c & iA, -3 + c + iA. The integrand, accor- 
ding to the properties of the function CD [i (c - p)] is continuous within the rectangle 

including boundaries, and analytic everywhere, except at the points p = -1, -2, -3, 

where there are poles ; at the point p = -1 the pole is simple, at the other two points 
there are double poles. In addition, the function tends to zero when 1 p 1 + 00 evenly 
in the strip -3 f c < Rep < c. 

Applying the residue theorem to integral (2.11) and passing to the limit as A --+ co, 
we obtain -3fCficC (2.12) 

3 = a, (0) t a, (8) r In r +u3 (El) r“ ii7 r + & ‘2 f (p, 0) @+ [i (c-p)] r-P-‘dp 
--3+C--iZC 

The coefficients of this expansion are calculated according to the formula 

ah. (8) = _-L__nll-’ 
(IL - l)! a $_’ l(P 4 w ‘P (P, 311 IP=.-k (2.13) 

Here cp (p, 0) = f (p, Cl)@ Ii (c - p)l. and n is the multiplicity of the pole at the 
point p x -1~. To obtain the subsequent terms of the asymptotics we proceed as fol- 
lows. Using the formula (2.9) we replace the limiting value of @+ [i (c - p!] on the 
straight line He p = -3 f c of the function analytically extensible in the strip 
-3 + c < Re p < c by the limiting value of cl)_ [i (c - p)] of the function ana- 
lytically extensible in the strip --6; T c < Re p < -3 + c. Then we examine the 
contour integral (2.11) taken along the rectangle with vertices -4 + c + iA and 
-6 -i c + iA. Applying here the residue theorem and passing to the limit as A+ ~0, 
we obtain 

++c+ioa 
2 ’ 

3z s 
f (p, 0) Q+ [i (c - p)] r-o--Up = a4 (0) r3 In I‘ + a3 (0) r4 In2 r T 

-3+1 --im 
-a+r+im 

uG (0) r5 In? r + -&- 
s 

f (p, Cl) K-l Ii (c - 3 - p)] @+ [i (C - p) 1 r-j’-i rl] 
--fi+c--iu 

Here the coefficients are determined by the formula (2.13) where it should be assumed 

that Q’ (p. 0) = f (p, 8) K-l [i (c - 3 - p)] 0 [i (c - p)]. By proceeding simi- 



290 G.Ia.Popov and L.Ia.Tlkhonenku 

larly, more exact results can be obtained. It follows from (2.12) that the stress CT,+ at the 

top of the wedge is bounded. 

Let us investigate the behavior of oU at infinity. It is important to find here the beha- 

vior of the contact stress, since the existence of the integrals (1.2) depends on it. 

Assuming 0 : ‘/?.-r in the integral (2.10) and using the formula (2.9). we replace 

on the straight line Iic p c (I)_ [i (c -- p)l by (I)+ [i (c - II)!. Thenapplying 

Cauchy theorem and using the formula (2.9) now on the straight line nr p rz ;; -. c, 

we obtain the expression 

In the strip ~3 + c .( ~(1 11 .< (; :- c the integrand has a simple pole at the point 

I-’ = :j and two poles at complex conjugate points whose real part is greater than three. 

The behavior of o,, (I”. ‘/?x) when r -~* 00 is determined by the pole which has the 

smallest real part. Consequently, at infinity the contact stress decreases with v- I. 

3. Cane a ::/_s. Here the coefficient of the Carleman’s problem (1.5) has 

the form 3 

&==I 

/*‘1 (f) _ [Cc _+ q’ _ 11 tO’_+ .‘I (c \- il) t_ (C ;- i/j’ c! q -+ L-t (c -/ fi! 

4 fuller analysis shows that for % :I/iz;l we have r,, - ’ ,. In the case when 

--‘Is / c < II, the functions h’ ( rj and Fi (t) have the same properties as the func- 

tions determined by the formula (2.3) for -- i . y :’ 1. 
As in Sect. 2, we shall reduce the Carlernan’s problem (1.5) with the coefficient(3.1) 

to the Riemann’s problem (2.4). As previously, its order is calculated from the formulas 

(2.5), where h =- [ arg K I, (u) jr should be taken ; at the same time :\ I;rrg/i(/) 1:: 

:‘,;r -- -1,. where \: Iarg F, (/)]‘l I. AZ is found in the same way as it was done 

for the case r~. l/?!;(, but it is more convenient to assume here c - I,‘,;. As a 

result, here too we shall find that ~1, ---X. Then choosing as iirg (i, (1) --:h 
and realizing the formula (2.5) we obtain H+ 0. x.~ :! and x. 2. 

As previously, the solution of the Carleman’s problem (1.5) with the coefficient (3.1) 

is determined by the formulas (2.7). Moreover, the functions (1) (2) and H (0) are 

related by an expression analogous to (2.8) with the argument ‘/,.n/j replaced by :~:‘,n(~. 

It is obvious that here too the function (1) 1 i (c - I,) J possesses the properties mentioned 

in Sect 2. 

The stress o,, is determined by the formula (2.10) for ~- I/:! .’ L ’ I J. where in the 

expression for the integrand the argument l/zn/l is replaced by .!/,x[J. As in the case 

of % ‘/?x. we investigate the behavior of the stress o,) at the top of the wedge by 

means of the contour integral (2.11) and obtain the following expansion: 
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The symbol 7’ denotes the sum in which a6 (0) = (1. The expansion coefficients of 
(3.2) are defined by the formula (2.13) where k should be replaced by 1/3k. To obtain 
the subsequent terms of the asymptotics we have to use formula (2.9). Analyzing for- 
mula (3.2) we find that the stress ue for r -+ 0 has a singularity of the form r-’ 1. 

After obtaining the expansion of the function for a contact stress in the way indicated 

in Sect. 2, we come to the conclusion that oe (r, “/,n) for r -+ 00 decreases with r- *. 

The behavior of the stresses o, and r,@ coincides with the behavior of the stress (JO. 

4, C a a~ a = zr. Here the coefficient of the Carleman’s problem is expressed by 

h-(f) : - .I: fi (/i -k c j if) Ctg 37 (V -I- if) (4.1) 
h-=1 

and c 0 -: - ‘12. The coefficient K (t) for -l/r < c < 0 and that of the function 

(2.3) with - 1 < c < 0 possess the same properties. Let us reduce the Carleman’s 

problem thus obtained to the Riemann’s problem (2.4). Its order is calculated according 
to formula (2.5). For this it is necessary to find 

A = larg K (t)ltz = 3 rr - [arg tg z (c $- it)]+“,. 

We write the second term in the form 

Since th nt changes continuously from -1 to 1 and tg nc < 0 for - 1,‘:: < c < 0, it is 
easy to investigate the change of the argument. Besides this we shall find that 

Iargtg n (C + it)]:: = - 31. 

Taking this into account and realizing the formula (2.5) we find that X+ = 0, X- = 2 
and the order of the problem x ; 2. Consequently, the solution of the Carleman’s 
problem (1.5) is determined by the formulas (2.7) where the function A’ (t) is given 

by the formula (4.1). The functions CD (z) and B (p) are related by 

n (p) Y ii_ (ii i- p)-’ 0 Ii ((‘ - JJ)] S.‘c, .zp 

h-=0 

and the stress cjs is determined by the formula (2.10) for - lie < c < 9, in which 

f (II, 0) r- 
(p - 1) si!l (p + I) 3 - (p + 1) sin (v - I) U 

(1 $- 1’) (2 + p) (3 1 p) co5 xp 
Examining the behavior of the stress 50 at the top of the wedge and at infinity, we 

come to the conclusion that for I - 0 it has a singularity of the form r-‘,*, while for 

r + 00 the contact stress decreases with r- 4. The stresses G, and r,.s have a similar be- 

havior. The results obtained coincide with the corresponding results of [6]. 
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The dynamic contact problem for a half-plane reinforced on its boundary by a 
finite elastic strip is considered. The solution of the problem reduces to solving 

an integral equation of the first kind, and then an infinite system of linear equa- 
tions by using Chebyshev polynomials. It is proved that this infinite system of 

equations is quasi-completely regular. Moreover, a simple analytical expression, 

completely admissible for practical applications and differing by an arbitrarily 

small amount from the exact expression, is obtained for the kernel of the integral 
equation. In this case, for definite values of some physical parameter, the com- 
plete regularity of the appropriate infinite system of equations is proved in addi- 
tion to the quasi-complete regularity and numerical results are obtained for the 
law of variation of the amplitude of the tangential contact stresses under the strip. 

The problem under consideration is related to problems of load transfer from 
stringers to elastic solids which are important for engineering practice. The case 
of an infinite or semi-infinite strip has been examined earlier Cl]. 

1, Formul&tfon of the problem, Derivation of the governing 
equation. Let a semi-infinite plane be reinforced by an elastic strip of constant suf- 
ficiently small thickness h welded to a finite 

Fig. 1 

segment of its boundary [-a, a] . The 
purpose of this paper is to determine the 
contact stress distribution law along the 
segment connecting the elastic strip to the 
half-plane when a concentrated horizontal 
harmonic forcep sin W# (Fig. 1) is applied 
to one of the strip ends. For simplicity in 
the computations, we shall henceforth take 
this force as Pe-i-f (it is hence evidently 
necessary to take the imaginary part of 
the solution with the reverse sign). As in 


